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ABSTRACT
We consider the estimation of the boundary of a set when it is known to be sufficiently smooth, to satisfy
certain shape constraints and to have an additive structure. Our proposed method is based on spline
estimation of a conditional quantile regression and is resistant to outliers and/or extreme values in the data.
This work is a desirable extension of existing works in the literature and can also be viewed as an alternative
to existing estimators that have been used in empirical analysis. The results of a Monte Carlo study show
that the new method outperforms the existing methods when outliers or heterogeneity are present. Our
theoretical analysis indicates that our proposed boundary estimator is uniformly consistent under a set of
standard assumptions. We illustrate practical use of our method by estimating two production functions
using real-world datasets.
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1. Introduction

The estimation of the boundary of a set � given a subset of
n ∈ N observations of its elements has been the object of a large
literature in Statistics and Econometrics. The construction and
evaluation of the estimators that have emerged depend broadly
on three types of restrictions: (a) on the topological structure of
the space that contains � ; (b) on the properties that characterize
the boundary of � ; and (c) on the sampling assumptions gov-
erning the generation of the subset of observations to be used
in estimation. Important earlier contributions to this literature
include Korostelev, Simar, and Tsybakov (1995) where � =
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ g(x)} ⊆ [0, 1] × [0, 1], g is a
monotone non-decreasing function and Sn = {(Xi, Yi)}n

i=1 is a
set of independently drawn observations from a uniform density
f whose support is the closure of � . Härdle, Park, and Tsybakov
(1995) relaxed the assumption that f is uniform and assumes
that g belongs to a Hölder class. Hall, Park, and Stern (1998)
assumed g is continuously differentiable and Sn is generated by
a Poisson process. Park, Simar, and Weiner (2000) and Kneip,
Simar, and Wilson (2008) assumed � is a closed and strictly
convex subset of Rq

+ × R
d+, Sn is a set of independently drawn

observations from a continuous density f and the boundary of
� is sufficiently smooth.

At a general level, estimation of set boundaries is made diffi-
cult by the fact that the observations in Sn lie largely, by nature, in
the interior of � . This fact produces two undesirable properties
of many estimators that have emerged in the literature, viz., neg-
ative biases and significant sensitivity to extreme sample values
(outliers). The latter characteristic resulting from the fact that
most proposed estimators “envelope” the set of observations in
Sn. Solutions to these problems have mostly come, respectively,
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in the form of bias correction mechanisms (see Gijbels et al.
1999; Park, Simar, and Weiner 2000; Jeong and Simar 2006)
and through sharper or alternative specification of the bound-
ary as in Cazals, Florens, and Simar (2002), Aragon, Daouia,
and Thomas-Agnan (2005), Martins-Filho and Yao (2007), or
Daouia, Noh, and Park (2016). In addition to inherent bias and
sensitivity to outliers, most boundary estimators proposed in the
extant literature suffer from the “curse of dimensionality,” that
is, rates of convergence to the boundary that decrease with the
dimensionality of � . This is true, for example, for the popular
FDH (free disposal hull) and DEA (data envelopment analysis)
estimators first proposed by Deprins, Simar, and Tulkens (1984)
and Charnes, Cooper, and Rhodes (1978) and studied in Park,
Simar, and Weiner (2000) and Kneip, Simar, and Wilson (2008).
This is particularly problematic in empirical settings, where
most relevant applications involve � being a subset of spaces
with dimension at least greater than two.

In this article, we propose a smooth boundary estimator
that helps mitigate the aforementioned difficulties of the extant
literature and, in addition, allows for the imposition of com-
monly assumed shape constraints on the boundary, such as
monotonicity and concavity. The main idea is to combine the
boundary model proposed by Martins-Filho and Yao (2007)
with the additive specification and spline estimation procedure
of Wang, Xue, and Yang (2020). In particular, with little loss
of generality, we let � = {(x, y) : x ∈ [0, 1]d ⊂ R

d+, 0 ≤
y ≤ g(x) = g0 + ∑d

l=1 gl(xl)} and consider the estimation
of g based on a set of independently drawn observations Sn =
{(Yi, Xi)}n

i=1 ⊂ � with

Yi = g(Xi)Ri, (1)
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where Ri is an unobserved random variable taking values in [0,1]
and g belongs to a suitably defined class of additive functions
that may include shape constraints. The additive structure for g
not only eliminates “the curse of dimensionality” when d is large,
but also enables separate estimation of the shape and location
of the boundary. Following Martins-Filho and Yao (2007), our
robust boundary estimator is made possible by first estimating
the boundary shape using a nonparametric quantile regression,
then estimating the location using a robust procedure based on
the pseudo residuals. The estimation of both shape and location
are resistant to outliers.

Incorporating boundary shape constraints, such as mono-
tonicity and concavity, into boundary estimation has been the
object of a number of recent articles. Parmeter and Racine
(2013) introduced constrained kernel regression to obtain a
smooth boundary estimate with shape constraints. Daouia,
Noh, and Park (2016) used polynomial splines to obtain smooth
shape constrained boundary estimators and Wang et al. (2014)
proposed a kernel based shape-restricted τ ∈ (0, 1)-quantile
regression estimator. The methods developed in these articles
cannot be easily applied to the case where d ≥ 2. Here, we
adopt the one-step backfitted polynomial spline estimator with
shape constraints proposed in Wang and Xue (2015) to estimate
an additive boundary function. It uses polynomial splines to
approximate nonparametric additive functions and ensures
shape constraints of the boundary estimates by imposing
constraints on the spline coefficients. The proposed estimation
method takes advantage of linear programming and is very easy
to solve numerically.

We provide consistency of our proposed estimator and estab-
lish its rate of uniform convergence in probability. Since, in
essence, we consider a constrained quantile regression estima-
tor, the theoretical tools needed are different from the least
squares approach adopted in Wang, Xue, and Yang (2020).
Derivation of the asymptotic distributional theory is challenging
due to increasing number of parameters involved in spline
approximation, nonlinear form of the boundary function, and
shape constrained estimation.

The remainder of this article is organized as follows. Section 2
describes the additive boundary model in detail. In Section 3, we
give a detailed description of our three-step polynomial quantile
spline method to estimate the additive boundary and provide
the main theorems establishing the asymptotic properties of
our estimation procedure. Section 4 introduces a multiplicative
boundary model that allows for interactions among covariates.
Then, we briefly introduce procedures for knot selection and
outlier deletion in Section 5. In Section 6, we apply our method
in both simulations and real data analysis, and comparisons
between our proposed method and the one in Wang, Xue, and
Yang (2020) are provided. Section 7 concludes this article. The
lemmas and proofs are provided in the supplementary materials.

2. Additive Boundary Model

We consider the boundary model described in Equation (1) with

g (Xi) = g0 + g1 (Xi1) + · · · + gd (Xid) , (2)

where g0 is an unknown constant and each gl is an unknown
nonparametric function defined on [0,1] for l = 1, . . . , d. For

identification and estimation, we assume that each gl is theo-
retically centered with E

(
gl (Xl)

) = 0. The additive structure
for the boundary g described in Equation (2) has a number
of desirable properties. Besides imposing weaker restrictions
than a parametric model for the boundary, as will be apparent
when we discuss the theoretical properties of our estimator, the
additive structure eliminates the “curse of dimensionality” that
would emerge with d ≥ 2. One potential disadvantage of the
additive structure is the fact that g varies with xl only through
the component function gl. In particular, if g is differentiable, its
partial derivative with respect to xl is functionally independent
of xm for m �= l. This can be problematic in certain applications
in Economics where g may be interpreted as a production
function and it is desirable to have “marginal products” ∂g

∂xl
(x)

depend on all of x rather than only xl. In Section 4, we introduce
a multiplicative model that accommodates this situation.

Wang, Xue, and Yang (2020) proposed a two-step proce-
dure to estimate the additive boundary functions in (2). They
used polynomial splines to approximate nonparametric func-
tions and employed the least squares regression method to esti-
mate the spline coefficients. However, least squares estimation
is highly sensitive to outliers and skewed distributions com-
monly associated with real data in fields such as Economics and
Finance. Alternatively, quantile regression has proved advan-
tageous compared to regular mean regression to accommo-
date these issues. Therefore, in this article, we mainly focus on
the additive quantile regression approach for robust and stable
boundary estimation. In particular, we assume that for τ ∈ (0, 1)

the quantile function Qτ (Ri|Xi) = Qτ (Ri) = μRτ ∈ (0, 1), for
i = 1, . . . , n, where Qτ (R) = inf {r ∈ [0, 1] : τ ≤ FR (r)}, FR is
the marginal distribution function for variable R, and τ is the
order of the quantile. For example, the median function corre-
sponds to τ = 0.5. Then based on model (1), the conditional
quantile function of order τ of Yi given Xi can be written as

Qτ (Yi|Xi) = g (Xi) μRτ = mτ (Xi) , (3)

with

mτ (Xi) = m0,τ + m1,τ (Xi1) + · · · + md,τ (Xid) , (4)

where m0,τ = g0μRτ , ml,τ (Xil) = gl(Xil)μRτ is a function
defined on [0,1] and gives the relative shape of the boundary
component gl for l = 1, . . . , d, and the constant μRτ determines
the location of the boundary function. An advantage of model
(1) is that it allows for the separate estimation of the shape and
the location of the boundary functions. An estimation strategy
that explores this separation was first proposed in Martins-Filho
and Yao (2007) and adopted by Wang, Xue, and Yang (2020).

It should be noted that in some settings it may be desirable to
allow Qτ (Ri|Xi) to functionally depend on Xi or other observ-
able random variables. In fact, in the frontier estimation litera-
ture in Economics, it is often assumed that a set of “environmen-
tal variables” different from Xi impacts the distribution of R and
some of its functionals, such as conditional expectations, vari-
ances, and quantiles (see, e.g., Caudill, Ford, and Gropper 1995;
Alvarez et al. 2006; Simar and Wilson 2007; Parmeter, Wang, and
Kumbhakar 2017; Simar, van Keilegom, and Zelenyuk 2017). In
these settings, the separate estimation of boundary shape and
location as proposed herein is not possible, since our two-step
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estimation procedure depends critically on Qτ (Ri|Xi) = μRτ .
For example, when estimating production functions one may
assume that certain observable random variables capturing geo-
graphic conditions, institutional environment or other factors
that are not under the control of the firm, impact the joint
distribution of (Yi, Xi) through the conditional distribution of
Ri on these variables, exposing some of the limitations of our
approach.

In the following section, we propose a three-step procedure
to robustly estimate the additive functions in (2). In the first step,
we use quantile regression to estimate

{
ml,τ

}d
l=1. In the second

step, we estimate the location parameter μRτ . Finally, in the last
step, we incorporate the estimation results from the first two
steps to estimate the additive boundary functions using the fact
that gl = ml,τ /μRτ . Among these three steps, the first step is
the most important. Therefore, in the following we focus on the
estimation of the additive quantile functions

{
ml,τ

}d
l=1.

3. Methodology and Theory

3.1. Methodology

We start by describing a procedure for estimating
{

ml,τ
}d

l=1 in
model (4) by polynomial splines. Let tn = {0 = t0 ≤ t1 ≤
· · · ≤ tNn ≤ tNn+1 = 1} be a partition of [0, 1] with Nn interior
knots. Polynomial splines of degree p are polynomial functions
with degree p (or less) on each partitioned interval and which are
globally (p − 1)-times differentiable on [0,1]. Denote the space
of p-times continuously differentiable real-valued functions on
[0,1] by Cp [0, 1] and the space of polynomial splines with degree
p by Gp = Gp([0, 1], tn). In addition, let the B-spline basis of Gp

be given by B̃(x) = (̃
B1(x), . . . , B̃Jn+1(x)

)T , where Jn = Nn + p.
Here, without loss of generality, we concentrate on the first Jn
basis due to the fact that

∑Jn+1
j=1 B̃j(x) = 1. For each l =

1, . . . , d let Blj(xl) = B̃lj(xl) − n−1 ∑n
i=1 B̃lj(xil), and Bl(xl) =(

Bl1(xl), . . . , BlJn(xl)
)T . Then Bl(xl) defines a centered B-spline

basis for variable Xl, and B(x) = (
1, BT

1 (x1) , . . . , BT
d (xd)

)T

is a set of B-spline basis for estimating the additive quantile
functions in (4). The B-spline bases are centered using their
sample averages to consistently estimate the additive functions,
which are centered with respect to their theoretical means in
(4). The centering only affects the constant ascribed to each
additive function and does not change the functional shape of
each additive component.

If functions
{

ml,τ
}d

l=1 are smooth, we can approximate each
of them using spline functions that can be represented as linear
combinations of the centered B-splines basis. That is, one can
write ml,τ (xl) ≈ BT

l (xl)βl, where βl = (βl1, . . . , βlJn)
T . Letting

B(Xi) = (
1, BT

1 (Xi1), . . . , BT
d (Xid)

)T for i = 1, . . . , n, the
traditional polynomial spline estimators (Stone 1985; He and
Shi 1998) of the unknown coefficients β = (β0, βT

1 , . . . , βT
d )T

are obtained as

β̃ = arg min
β∈RdJn+1

n∑
i=1

ρτ

(
Yi − BT (Xi) β

)
, (5)

where ρτ is the “check function” defined as ρτ (u) =
u (τ − I (u < 0)) with I being the indicator function of the set

u < 0. Then the traditional polynomial spline estimators of
the unknown quantile function ml,τ at xl can be written as

m̃l,τ (xl) = BT
l (xl)β̃l, for l = 1, . . . , d. (6)

The traditional polynomial spline estimator in (6) does not
incorporate any shape constraints. Wang and Xue (2015)
developed a one-step backfitted constrained polynomial spline
method to estimate monotone additive functions. Sufficient
conditions for a polynomial spline ml,τ (xl) = BT

l (xl)βl to
be monotonically increasing is that the coefficients βl satisfy
βl,1 ≥ 0 and βl,j ≥ βl,j−1, for j = 2, . . . , Jn. In addition, Lemmas
2 and 3 of Wang, Xue, and Yang (2020) showed that sufficient
conditions for a polynomial spline ml,τ (xl) = BT

l (xl)βl with
degree p ≥ 2 to be concave are that the coefficients βl satisfy
βl,2 − βl,1 ≤ 2βl,1; βl,j − βl,j−1 ≤ jβl,j−1/

(
j − 1

) − βl,j−2 for
j = 3, . . . , p − 1; βl,p − βl,p−1 ≤ pβl,p−1/

(
p − 1

) − βl,p−2;
βl,j − βl,j−1 ≤ βl,j−1 − βl,j−2 for j = p + 1, . . . , Nn + 1;
βl,Nn+2 − βl,Nn+1 ≤ (

p − 1
) (

βl,Nn+1 − βl,Nn

)
/p; and for

j = Nn+3, . . . , Nn+p, βl,j−βl,j−1 ≤ (
Nn − j + p + 1

) (
βl,j−1−

βl,j−2
)
/
(
Nn − j + p + 2

)
. When p = 1, sufficient conditions for

a linear spline to be concave are that if Nn = 1, β2 − β1 ≤ β1;
otherwise, β2 − β1 ≤ β1 and βj − βj−1 ≤ βj−1 − βj−2 for
j = 3, . . . , Nn + 1. For simplicity, let CM and CC denote the
set of spline coefficients that satisfy the monotone increasing
conditions and concave conditions, respectively.

Using the traditional polynomial spline estimator
{

m̃l,τ
}d

l=1
as an initial estimator and letting m̃0,τ := β̃0, the first com-
ponent of β̃ , we define Yi,−l = Yi − m̃0,τ − ∑

l′ �=l m̃l′,τ (Xil′)
as the pseudo-responses associated with the lth direction and
Y−l = (

Y1,−l, . . . , Yn,−l
)T for l = 1, . . . , d. Then, Y−l can be

regarded as an approximation of
(
ml,τ (X1l) , . . . , ml,τ (Xnl)

)T .
To obtain spline estimators that follow shape constraints, we

consider a one-step backfitted procedure. For each l = 1, . . . , d,
the spline coefficients β̂l are obtained as

β̂l = arg min
βl∈C�

n∑
i=1

ρτ

(
Yi,−l − BT

l (Xil) βl
)

. (7)

We note that the minimization is over the constrained set C�.
For example, it gives monotone functions if C� = CM , and
monotone and concave functions if C� = CM ∩CC. The resulting
shape constrained polynomial spline estimator of ml,τ at xl is
given by

m̂l,τ (xl) = BT
l (xl)β̂l, (8)

for l = 1, . . . , d, and mτ (x) is estimated as m̂τ (x) = m̂0,τ +∑d
l=1 m̂l,τ (xl).
Similar to Martins-Filho and Yao (2007) and Wang, Xue, and

Yang (2020), model (1) immediately gives Yi
mτ (Xi)

= g(Xi)Ri
g(Xi)μRτ

=
Ri

μRτ
. Therefore, the location of the boundary μRτ can be esti-

mated by

μ̂Rτ =
(

max
1≤i≤n

(Yi/m̂τ (Xi))

)−1
, (9)

since Ri is bounded above by 1. Although m̂τ (Xi) is robust to
outliers, μ̂Rτ is not, since Yi is used in the calculation of the
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maximum. In Section 5, we introduce a robust extension of μ̂Rτ

which is more useful when the data contains outliers. Finally,
since gl = ml,τ /μRτ , gl (xl) can be directly estimated as

ĝl(xl) = m̂l,τ (xl)/μ̂Rτ . (10)

The additive boundary g at x is estimated by ĝ (x) = ĝ0 (x) +∑d
l=1 ĝl (xl).
Compared with the constrained regression spline method

given in Wang, Xue, and Yang (2020), our proposed method
not only inherits the desirable properties of computational effi-
ciency and spline approximation, but also allows us to avoid
assumptions about the distribution of the error process. Fur-
thermore, the proposed constrained quantile regression method
provides a highly robust estimator which is more resistant to
extreme observations or outliers than classical regression.

3.2. Asymptotic Properties

In what follows, an ∼ bn means that there are constants 0 <

a ≤ b < ∞ such that a ≤ an/bn ≤ b for all n and |·| denotes
the Euclidean norm of a vector or the absolute value of a real
number according to the context. To characterize some of the
asymptotic properties of our estimator, we make the following
assumptions.

A1 The components of the sequence of random vectors {Xi}n
i=1

are independent and identically distributed taking values in
[0, 1]d. The common joint density function of Xi, denoted
by f X, is absolutely continuous with respect to Lebesgue
measure and satisfies 0 < c1 ≤ fX (x) ≤ c2 < ∞ for
x ∈ [0, 1]d and for some constants c1 and c2.

A2 The components of the sequence of random variables
{Ri}n

i=1 are independent and identically distributed with
Qτ (R|X = x) = Qτ (R) = μRτ ∈ (0, 1) for almost every
x ∈ [0, 1]d. Their common marginal distribution function FR
is absolutely continuous with density f R such that FR (0) = 0
and FR (1) = 1. In addition, we assume f R is a strictly positive
function with a uniformly bounded first-order derivative.

A3 The sequence of interior knots in tn = {
0 = t0 ≤ t1 ≤

· · · ≤ tNn ≤ tNn+1 = 1
}

is equally spaced on [0,1], with
tj = j/ (Nn + 1) for j = 0, 1, . . . , Nn + 1.

A4 For every l = 1, . . . , d, the function gl is
(
p + 1

)
-times

continuously differentiable on [0, 1] for some integer p ≥ 1.
A5 The number of interior knots Nn satisfies N2

n
√

log n/n →
0, Np+2

n
√

log n/n → ∞, n → ∞.
A6 For every l = 1, . . . , d, the function gl is monotone increas-

ing and there exists a constant c3 > 0, such that g(1)

l (xl) ≥ c3

for all xl ∈ [0, 1], where g(1)

l (xl) = d
dxl

gl(xl).
A6* For every l = 1, . . . , d, the function gl is concave and there

exists a constants c4 < 0, such that g(2)

l (xl) ≤ c4 for all xl ∈
[0, 1], where g(2)

l (xl) = d2

dx2
l

gl(xl).

Assumption (A1) restricts the density of Xi to have bounded
support, which coincides with Condition 1 in Wang, Xue, and
Yang (2020). Assumption (A2) ensures a common distribution
for the efficiency variable. It also requires that f R be bounded
away from 0, which is needed for the rate of convergence as in

Horowitz and Lee (2005). Assumption (A3) is about equal spac-
ing of the interior knots, which is the same as the one in Xue and
Yang (2006) and Wang, Xue, and Yang (2020), and assumption
(A4) imposes a restriction on the rate of growth on the number
of knots. For example, the choice of Nn ∼ (log n/n)−1/(2p+3)

satisfies the condition. Assumption (A5) requires that the addi-
tive functions be smooth. Assumptions (A6) and (A6*) restrict
the additive functions to be strictly monotone increasing or con-
cave, respectively. Similar assumptions are also used in Wang,
Xue, and Yang (2020). These assumptions are common in the
nonparametric literature and are reasonable in a wide variety of
applications.

For the traditional spline estimator m̃τ defined in (6), we have
the following result, which follows from Theorem 1 of Horowitz
and Lee (2005).

Lemma 1. Suppose Assumptions (A1)–(A5) hold. Then, for l =
1, . . . , d,

sup
xl∈[0,1]

∣∣m̃l,τ (xl) − ml,τ (xl)
∣∣ = Op

(
Nn/

√
n
)

, (11)

and

|m̃0,τ − m0,τ | = Op
(
Nn/

√
n
)

(12)

as n → ∞.

To obtain the asymptotic results for m̂l,τ , we first consider
the one-step backfitted unconstrained estimator m̌l,τ . To be more
specific, for each l = 1, . . . , d, m̌l,τ is defined as

m̌l,τ (xl) = BT
l (xl)β̌l, (13)

with

β̌l = arg min
βl∈RJn

n∑
i=1

ρτ

(
Yi,−l − BT

l (xil) βl
)

, (14)

where Yi,−l = Yi − m̃0,τ −∑
l′ �=l m̃l′,τ (Xil′). Note that

{
m̌l,τ

}d
l=1

are one-step backfitted estimators defined similarly as
{

m̂l,τ
}d
=1

in (8), but without any shape constraints. In the following,
their corresponding estimators of μRτ are denoted as μ̌Rτ and
μ̂Rτ , respectively, while the corresponding estimators of gl are
denoted as ǧl and ĝl.

Theorem 1. Suppose Assumptions (A1)–(A5) hold. Then, for
l = 1, . . . , d, as n → ∞,

sup
xl∈[0,1]

∣∣m̌l,τ (xl) − ml,τ (xl)
∣∣ = Op

(
Nn

√
log n/n + N−(p+1)

n
)

,

(15)
and for p ≥ 1,

sup
xl∈[0,1]

∣∣∣m̌(1)

l,τ (xl) − m(1)

l,τ (xl)
∣∣∣ = Op

(
N2

n
√

log n/n + N−p
n

)
,

and for p ≥ 2,

sup
xl∈[0,1]

∣∣∣m̌(2)

l,τ (xl) − m(2)

l,τ (xl)
∣∣∣ = Op

(
N3

n
√

log n/n + N−p+1
n

)
.
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The L2 convergence rate of polynomial spline estimators
for quantile additive models has been established in He and
Shi (1994, 1996). Similar uniform convergence results were
obtained in Theorem 1 of Horowitz and Lee (2005) for a tradi-
tional polynomial spline estimator. Here, uniform convergence
results are established for the one-step backfitted estimator and
their first- and second-order derivatives instead. Because of
backfitting, the techniques used in the proof are quite different
from those in the existing literature. In addition, our results
can be viewed as an extension of Theorem 1 in He and Shi
(1998), which established the uniform rate of convergence for
spline estimators in univariate nonparametric quantile regres-
sion. However, He and Shi (1998) assumes the regression errors
are identically distributed, while the multiplicative model (1)
implies that our error terms are heteroscedastic.

Theorem 2. Under regularity conditions for the monotone con-
strained estimator (i.e., (A1)–(A6)), or under regularity con-
ditions for the concave constrained estimator (i.e., (A1)–(A5),
(A6*)), as n → ∞,

sup
xl∈[0,1]

∣∣m̂l,τ (xl) − ml,τ (xl)
∣∣ + ∣∣μ̂Rτ − μRτ

∣∣
+ sup

x∈[0,1]d

∣∣ĝ(x) − g(x)
∣∣ = Op

(
Nn

√
log n/n + N−(p+1)

n
)

for p ≤ 3 and l = 1, . . . , d.

Under condition (A6) or (A6*), Theorem 1 implies that the
unconstrained estimators actually satisfy the shape constraints
of monotonicity or concavity asymptotically when the sample
size is sufficiently large. However, the unconstrained spline esti-
mators do not necessarily satisfy the set of linear constraints
on the spline coefficients proposed in Section 3, since these
constraints in general are only sufficient, but not necessary. But
when p ≤ 3, Wang and Xue (2015) showed these linear con-
straints are necessary and sufficient conditions. Therefore, the
unconstrained and constrained estimators are asymptotically
equivalent and enjoy the same asymptotic properties for p ≤ 3.

4. Multiplicative Boundary Model

The additive boundary model in (4) is easy to interpret and
allows us to circumvent the “curse-of-dimensionality” when
estimating multivariate nonparametric functions. However, the
additive structure in model (4) does not allow the derivative of a
component function to depend on the argument of other com-
ponent functions. In this section, we consider a multiplicative
boundary model that allows interactions among input variables.
The model is inspired by the well-known Cobb–Douglas func-
tion with g in (1) taking the form

g(X) = α0Xα1
1 · · · Xαd

d , (16)

where α0 and {αl}d
l=1 are unknown parameters and quantify the

responsiveness of the boundary to changes in its arguments.
The function in (16) is multiplicative on its domain. Equiva-
lently, it is additive in log-scale with log(g(X)) = log(α0) +∑d

l=1 αl log(Xl). As a nonparametric extension, we consider
log(g(X)) = m0 + m1(X1) + · · · + md(Xd), where m0 is

an unknown constant and m1, . . . , md are unknown functions.
As such, the nonparametric multiplicative model contains the
Cobb–Douglas model in (16) as a special case. In addition,
due to the monotonicity of the log-transformation, the shape
constraints on each of the additive components mj entail the
corresponding shape constraints on the derivative with respect
to each component direction in the domain. For example, the
monotonicity of m1 implies that the derivative with respect to X1
is also monotone. Therefore, we extend the shape constrained
polynomial spline method proposed in Section 3 to estimate the
nonparametric multiplicative model.

To estimate the unknown components in the multiplicative
boundary model, we observe that log(Y) = m0 + m1(X1) +
· · · + md(Xd) + log(R). Therefore,

mτ ,log(Y)(x) = Qτ

(
log(Y)|X = x

)
= m∗

0 + m1(x1) + · · · + md(xd), (17)

where m∗
0 = m0 +μτ ,log(R) with μ

τ ,log(R) being the τ th-quantile
of log(R). Therefore, the quantile function is different from the
boundary function only by the location constant. In addition,
g(x) = exp(Qτ

(
log(Y)|X = x

)
)/ exp(μτ ,log(R)).

Similar to the estimation method proposed in Section 3, the
two-step constrained spline method can be used to estimate the
multiplicative model. In the first step, the backfitted constrained
polynomial spline method in Section 3 can be used to estimate
mτ ,log(Y)(x), but replacing Yi with log(Yi). In particular, Equa-
tion (17) indicates that the additive functions {ml}d

l=1 can be
directly estimated by

{
m̂l(xl)

}d
l=1, which are defined similarly as

m̂l,τ (xl) in (8) but with β̂ obtained using log Yi as response vari-
ables in (7) instead. In the second step, let η = exp(μτ ,log(R)),
and since Ri/ exp(μτ ,log(R)) = Yi/ exp

(
Qτ

(
log(Y)|X))

, taking
the maximum over i = 1, . . . , n on both sides and setting
max1≤i≤n Ri = 1 we obtain

η̂ =
{

max
i=1,...,n

Yi

exp
(
m̂τ ,log(Y)(Xi)

)}−1

.

Combining the previous two estimation results, the boundary
function can be estimated by ĝ(x) = exp

(
m̂τ ,log(Y)(X)

)
η̂−1.

Similar to the additive boundary model, we have the following
uniform convergence result under the multiplicative model.

Theorem 3. Under regularity conditions for the monotone con-
strained estimator (i.e., (A1)–(A6)), and under regularity con-
ditions for the concave constrained estimator (i.e., (A1)–(A5),
(A6*)), as n → ∞,

sup
xl∈[0,1]

|m̂l(xl) − ml(xl)| + |̂η − η| + sup
x∈[0,1]d

∣∣ĝ(x) − g(x)
∣∣

= Op
(

Nn
√

log n/n + N−(p+1)
n

)
,

for p ≤ 3 and l = 1, . . . , d.

5. Implementation

5.1. Knot Number Selection

Polynomial splines are popular nonparametric regression tools
because of their good approximation properties (de Boor
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2001). However, it is well understood that the selection of knot
sequence plays an important role in the numerical performance
of spline estimators. To reduce the computational complexity,
the same knot sequences are used for both traditional and one-
step backfitted polynomial spline estimation procedures. In
addition, for each input variable, the knot sequences are equally
spaced with the same number of interior knots Nn. The optimal
Nn, denoted N̂opt

n , is selected using the Bayesian information
criterion (BIC) (He and Shi 1998). Specifically, denote the
estimator for the ith response Yi by Ŷi (Nn) , i = 1, . . . , n. Then,
N̂opt

n is given by N̂opt
n = arg min

Nn

BIC (Nn) , where BIC(Nn) =
log

{∑n
i=1 ρτ

[
Yi − Ŷi(Nn)

]} + {
d(Nn + p) + 1

}
log n/n.

5.2. Outliers Deletion

In (9), the estimator for the location of the boundary is μ̂Rτ ={
max

i∈{1,...,n} [Yi/m̂τ (Xi)]
}−1

, which is highly sensitive to the out-

liers in the data. This can produce a deterioration of the accuracy
of the boundary estimation. To get a more robust estimator of
μRτ , it is necessary to screen out or remove outliers in μ̂Rτ .
One approach is to use inter-quartile range (IQR), which is
defined as IQR = Q3 − Q1 with Q1 and Q3 being the first
and third quartile of Yi/m̂τ (Xi) and i = 1, . . . , n. Define
the adjusted interval AIQR = [Q1 − 1.5IQR, Q3 + 1.5IQR],
and data points that fall out of AIQR are considered outliers.
Accordingly, the adjusted robust estimator of μRτ is defined as

μ̂Rτ =
[

max
i:Yi/m̂τ (Xi)∈AIQR

Yi/m̂τ (Xi)

]−1
.

6. Simulations and Empirical Results

In this section, we investigate the numerical performance of our
estimators by applying the proposed methods to both simulated
and real data. Simulations are carried out for both univariate
and multivariate cases. In the simulation study, the observations
are simulated mainly according to the data generating scheme
used in Wang, Xue, and Yang (2020) so that we can compare our
proposed methods with the ones in Wang, Xue, and Yang (2020).
Specifically, we consider six different estimation methods. Three
are from Wang, Xue, and Yang (2020) including the uncon-
strained regression spline (URS), the monotone constrained
regression spline (MCRS), and the monotone and concave con-
strained regression spline (MCCRS). The remaining three esti-
mators are our proposed methods using the quantile approach,
namely, the unconstrained quantile spline (UQS), the monotone
constrained quantile spline (MCQS), and both monotone and
concave constrained quantile spline (MCCQS) as in (10). For all
six methods, we have used linear splines (p = 1) with the same
knot sequence, where the number of knots is selected using BIC
described above.

The performance of each method is assessed by the aver-
aged integrated squared error (AISE) and the median inte-
grated squared error (MISE). Let ĝ be an estimator of g. The
integrated squared error (ISE) of ĝ is defined as ISE(ĝ) =

1
ngrid

∑ngrid
k=1

(
ĝ(xk) − g(xk)

)2, where {xk}ngrid
k=1 are the grid points.

Suppose there are N replications, and ISEr is computed for each

replication r = 1, . . . , N. Then, the AISE is defined as AISE =
1
N

∑N
r=1 ISEr , while the MISE is defined as the median value of

all ISEr (r = 1, . . . , N).
In Section 6.2, we apply the proposed estimators to estimate

a production function using Norwegian farm data. In the sup-
plementary materials to this article, we estimate a production
function using U.S. high technology firm data.

6.1. Simulation Study

6.1.1. Univariate Case
Data are independently generated from a boundary model with
Y = g(X)R, where the variable X is uniformly distributed on
the interval [1, 2] and g (x) = 3 (x − 1.5)3 + 0.25x + 1.1125
is monotone increasing. To explore the robustness of quantile
regression, the variable R is generated from the following two
distributions:

D1: Exponential distribution: R = exp (−Z) with Z ∼
exp(1/3);

D2: Mixed normal distribution: R = exp(Z)

(1+exp(Z))
with Z ∼

0.3N
(−2, 0.52) + 0.7N

(
2, 0.52).

For each distribution, we consider sample sizes n = 100, 250
or 500, and the number of replications N = 1000. To estimate
g, the median regression with τ = 0.5 is used in the first
step of the proposed method. The estimation methods are URS,
UQS, MCRS, MCQS, MCCRS, and MCCQS. For simplicity, the
linear spline (p = 1) is used in our estimation. The optimal
number of interior knots is selected by using BIC as mentioned
in Section 5.1, and knots are equally placed in the range of input
variables.

The simulation results are summarized in Tables 1 and 2,
which report AISE and MISE values from different methods.
They clearly show that, in general, both AISEs and MISEs from
the proposed quantile methods decrease as the sample size n
increases, which supports the asymptotic convergence results
given in Section 3. In addition, the shape constraints generally
enhance the performance of boundary estimators with both
MCRS and MCCRS (both MCQS and MCCQS) giving smaller
AISEs or MISEs than URS (UQS) for both exponential and
mixed normal distributions.

Tables 1 and 2 suggest that mean regression methods are
slightly and consistently better than the proposed quantile
regression method for the exponential distribution. However,
it is obvious that the quantile regression is more robust for
the mixed normal distribution where the distribution of R is
polarized with heavier tails on both ends of the support [0,1].

To provide a visual presentation of our simulation results, we
plot the typical estimated boundary functions using four differ-
ent methods (URS, UQS, MCRS, and MCQS) when the sample
size is n = 250. For each estimation method, the typical estimate
is the one with its ISE being the median among 1000 ISEs from
replications. Figures 1(a) and 1(c) plot the estimated boundary
functions from both exponential and mixed normal distribution
using URS (dashed), MCRS (dotted), UQS (dot-dashed), and
MCQS (long-dashed) for each distribution, along with the true
boundary (solid). It shows that all methods estimate the bound-
ary function reasonably well. In addition, estimated boundaries
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Table 1. AISEs of boundary function estimators under both exponential without/with outliers and mixed normal distributions.

Distributions n URS UQS MCRS MCQS MCCRS MCCQS

Exponential
100 0.01772 0.03163 0.01585 0.02486 0.01602 0.02473
250 0.01411 0.02173 0.01330 0.01899 0.01510 0.02135
500 0.01136 0.01529 0.01087 0.01442 0.01511 0.01941

Mixed normal
100 0.05276 0.08121 0.02863 0.02230 0.02546 0.02213
250 0.02129 0.00620 0.01642 0.00602 0.01538 0.00642
500 0.01213 0.00406 0.00998 0.00402 0.01139 0.00634

Exponential with outliers
100 0.17105 0.04401 0.10567 0.04106 0.10778 0.03862
250 0.12384 0.05979 0.09752 0.05901 0.09687 0.05950
500 0.11802 0.07804 0.10953 0.07713 0.10683 0.07808

Table 2. MISEs of boundary function estimators under both exponential without/with outliers and mixed normal distributions.

Distributions n URS UQS MCRS MCQS MCCRS MCCQS

Exponential
100 0.01292 0.01840 0.01194 0.01640 0.01147 0.01603
250 0.01168 0.01563 0.01091 0.01442 0.01236 0.01589
500 0.01030 0.01269 0.00996 0.01201 0.01294 0.01563

Mixed normal
100 0.01958 0.00537 0.01641 0.00523 0.01290 0.00491
250 0.01215 0.00437 0.01040 0.00430 0.00888 0.00455
500 0.00719 0.00325 0.00594 0.00320 0.00727 0.00481

Exponential with outliers
100 0.10965 0.02051 0.06529 0.01978 0.06978 0.01752
250 0.08838 0.02286 0.06868 0.02148 0.07309 0.02124
500 0.07982 0.02707 0.07386 0.02653 0.07745 0.02808

Figure 1. Simulation results for n = 250. In each plot, the solid black line represents the true curve. The dashed ( ) and dotted ( ) lines denote the boundaries
estimated using URS and MCRS, while the dot-dashed ( ) and long-dashed ( ) lines represent the corresponding boundary estimated using UQS and MCQS.

under shape constraints are closer to the true boundary than
those without shape constraints, implying incorporating shape
constraint is desirable in boundary estimation.

To investigate the effect of outliers on boundary estimation,
we simulate data from the same boundary model as before with
the variable R = exp (−Z) and Z ∼ exp(1/3). But additional
outliers are randomly and uniformly generated on the interval
[max(Y), 5 max(Y)] with the number of outliers being 5% of
the sample size. Furthermore, to get an efficient and robust
estimation of the boundary function, we implement the outliers
deletion introduced in Section 5.2. From the AISE and MISE
values reported in Tables 1 and 2, the quantile regression is more
resistant to outliers than the mean regression approach. For
example, when sample size n = 100, the AISE of URS (or UQS)
from exponential with outliers is almost 10 times (or 1.5 times)
larger than the one without outliers, and the AISE (or MISE) of
UQS is only 26% (or 19%) of that from URS. But one notices
that both AISEs and MISEs do not decrease as the sample size

increases. This is due to the fact that the same percentage of
outliers is added for all sample sizes.

Figure 1(b) plots the typical estimated boundary functions
for exponential distribution with outliers using URS, UQS,
MCRS, and MCQS. It reveals that quantile spline is more
resistant to outliers than regression spline. In addition, shape
constraints also improve the performance of boundary esti-
mation. In summary, our simulation study confirms that the
proposed quantile methods have better numerical performances
than their mean regression counterparts when the distribution
of R has heavier tails on [0,1] and/or there are outliers in the
data. Moreover, considering shape constraints not only provides
a more interpretable estimator for boundary functions, but also
improves the estimation accuracy.

6.1.2. Multivariate Additive Case
Experiments were also carried out with d = 4. More specifically,
we consider the additive model Y = [

g0 + g1 (X1) + g2 (X2) +
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g3 (X3) + g4 (X4)
]
R, where g0 = 8, g1 (x) = 2x − 1, g2 (x) =

2x + [sin (2πx)] /2π − 1, g3 (x) = 3x1/3 − 9/4, and g4 (x) =(
log(x) + 1

)
/2. Each of the variables Xl (l = 1, 2, 3, 4) are inde-

pendently and uniformly distributed on [0, 1]. R is generated
according to D2 in Section 6.1.1. A total of N = 1000 replications
with sample sizes n = 100, 250, and 500 are considered. Similarly,
the order of the quantile regression τ is set to be 0.5, that is, the
median regression.

The additive boundary functions are estimated using URS,
MCRS MCCRS, MQS, MCQS, and MCCQS. Again, linear
splines (p = 1) will be used in our multivariate analysis, and
the optimal number of interior knots is also selected by using
BIC. For simplicity, all input variables have the same number
of interior knots, and knots are equally spaced in the range of
each input variable Xl (l = 1, 2, 3, 4). Both AISEs and MISEs
are computed for each estimated function ĝl (l = 1, 2, 3, 4). In
addition, we evaluate the overall performances of the boundary
function estimation by using both regression spline and quantile
spline. Results are shown in Tables 3 and 4.

Table 3. AISEs of multivariate additive boundary functions estimators with mixed
normal distribution.

n Method ĝ1(x) ĝ2(x) ĝ3(x) ĝ4(x) ĝ(x)

100

URS 0.48320 0.47491 0.47773 0.46661 2.53886
UQS 0.23289 0.19860 0.19719 0.16461 1.15042

MCRS 0.32190 0.27417 0.28519 0.26144 2.00370
MCQS 0.16533 0.12386 0.12644 0.10802 0.94372

MCCRS 0.30092 0.23461 0.22834 0.22038 1.83743
MCCQS 0.15853 0.11205 0.11749 0.10332 0.93337

250

URS 0.19861 0.20988 0.20795 0.20680 1.64059
UQS 0.03948 0.03287 0.03488 0.04762 0.37463

MCRS 0.15345 0.14706 0.14961 0.13614 1.34049
MCQS 0.03110 0.03094 0.03162 0.03780 0.34073

MCCRS 0.14615 0.11826 0.12296 0.11565 1.25386
MCCQS 0.02976 0.02640 0.03051 0.03745 0.34321

500

URS 0.10418 0.10270 0.10478 0.11193 1.17211
UQS 0.01355 0.01559 0.02096 0.03054 0.21670

MCRS 0.09041 0.08307 0.08355 0.08525 0.96522
MCQS 0.01348 0.01553 0.02061 0.02903 0.21367

MCCRS 0.08468 0.06730 0.07197 0.07516 0.92844
MCCQS 0.01267 0.01343 0.02050 0.02897 0.21754

Table 4. MISEs of multivariate additive boundary functions estimators with mixed
normal distribution.

n Method ĝ1(x) ĝ2(x) ĝ3(x) ĝ4(x) ĝ(x)

100

URS 0.31996 0.31414 0.30594 0.31045 2.04145
UQS 0.04731 0.04508 0.05010 0.05667 0.46583

MCRS 0.15656 0.13678 0.15545 0.14713 1.33625
MCQS 0.04658 0.04472 0.03820 0.04159 0.38344

MCCRS 0.15195 0.12347 0.11489 0.12426 1.20808
MCCQS 0.04002 0.03303 0.03370 0.03712 0.37979

250

URS 0.13057 0.14690 0.14126 0.13768 1.34887
UQS 0.01699 0.01945 0.02391 0.03127 0.21084

MCRS 0.08768 0.09002 0.09308 0.08238 1.04597
MCQS 0.01681 0.01922 0.02278 0.02541 0.19754

MCCRS 0.08529 0.07073 0.06333 0.06212 0.95540
MCCQS 0.01493 0.01476 0.02222 0.02489 0.19629

500

URS 0.06701 0.07335 0.07675 0.08139 1.07930
UQS 0.00817 0.01182 0.01630 0.02597 0.15842

MCRS 0.06126 0.05508 0.05184 0.05808 0.78028
MCQS 0.00820 0.01185 0.01619 0.02417 0.15157

MCCRS 0.05999 0.04712 0.03989 0.04727 0.71384
MCCQS 0.00738 0.00978 0.01623 0.02416 0.15568

Similar to the results from the univariate approach, as the
sample size increases, both AISEs and MISEs decrease for all
six estimation methods. Clearly, the methods with shape con-
straints improve the accuracy of boundary estimation not only
for individual additive component but also for the boundary
function. In general, the quantile regression consistently and
significantly improves estimation accuracy. For example, when
n = 250 and for input variable X1, the AISE (or MISE) of MCQS
is only 20% of that from MCRS.

For each input variable, we plot the estimated directional
boundary using URS, UQS, MCCRS, and MCCQS. We ran-
domly generate N = 1000 datasets with sample size n = 250,
and then compute the ISE values for the additive functions.
The dataset which corresponds to the median value of ISE will
be used as the dataset to generate the corresponding estimated
boundary for each input variable. Figure 2 illustrates curve
estimates from URS, UQS, MCCRS, and MCCQS. It shows that
all methods give reasonable curve estimates, while the ones
from the quantile regression are generally better than their mean
regression counterpart. For example, UQS (MCCQS) gives bet-
ter curve estimates than URS (MCCRS). In addition, the esti-
mated curves using shape constraints are closer to the true
boundary than the ones without shape constraints.

To investigate the performance of the proposed boundary
estimators under different quantiles, we consider the estima-
tion of the multivariate additive model given above using the
quantile regressions with τ = 0.25 and 0.75, and compare their
performances with the median regression (τ = 0.5). Tables 5
and 6 compare the AISEs and MISEs of MCCQS at different
quantiles. Similar simulation results (not reported here) are
observed for other methods such as MQS and MCQS. It is clear
that as the sample sizes increase, both AISEs and MISEs decrease
for all quantiles. In addition, τ = 0.25 gives the worst estimation
results at all sample sizes. It is due to the fact that the location
parameter μτ has smaller value with smaller quantile τ , and the
inverse of μ̂τ , and the estimated boundary can be unstable if the
quantity μ̂τ is small.

6.1.3. Multivariate Multiplicative Case
We generate data from the following multiplicative model,

log(Y) = [
g0 + g1 (X1) + g2 (X2) + g3 (X3) + g4 (X4)

]
+ log(R), (18)

where g0 = 3, g1 (x) = x/2 − 1/4, g2 (x) = (
2x + [sin (2πx)] /

(2π)−1
)
/4, g3 (x) = x1/3−3/4, and g4 (x) = (

log(x) + 2
)
/10.

The set-up for both the input variables (X1, . . . , X4) and R are
the same as the ones considered in Section 6.1.2. Similarly, N =
1000 replications with sample sizes n = 100, 250, and 500 and
the median regression are considered.

URS, MCRS MCCRS, MQS, MCQS, and MCCQS are used
to estimate the multiplicative boundary functions. The linear
splines (p = 1) will be used in our analysis, and the optimal
number of interior knots is also selected by using BIC. The
same number of interior knots is used for each input vari-
able, and knots are equally spaced in the range of each input
variable. Both AISEs and MISEs are computed for each esti-
mated function ĝl (l = 1, 2, 3, 4). In addition, we evaluate the
overall performances of boundary function estimation by using
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Figure 2. Plots of the estimated boundaries in Equation (10) for n = 250. In each plot, the solid line represents the true curve, while the dashed ( ), dot-dashed ( ),
dotted ( ), and long-dashed ( ) lines represent typically fitted curves using URS, MCCRS, UQS, and MCCQS, respectively.

Table 5. AISEs of multivariate additive boundary functions estimators with mixed
normal distribution using MCCQS under different τ .

n τ ĝ1(x) ĝ2(x) ĝ3(x) ĝ4(x) ĝ(x)

100
0.25 3.25470 2.49609 2.49433 2.27860 19.79113
0.50 0.15853 0.11205 0.11749 0.10332 0.93337
0.75 0.01672 0.01808 0.02072 0.02442 0.18752

250
0.25 1.76886 1.58171 1.65198 1.53507 11.32516
0.50 0.02976 0.02640 0.03051 0.03745 0.34321
0.75 0.00616 0.00977 0.01256 0.01623 0.11250

500
0.25 1.21707 1.00144 0.98613 1.08339 7.49704
0.50 0.01267 0.01343 0.02050 0.02897 0.21754
0.75 0.00334 0.00721 0.00958 0.01411 0.08992

Table 6. MISEs of multivariate additive boundary functions estimators with mixed
normal distribution using MCCQS under different τ .

n τ ĝ1(x) ĝ2(x) ĝ3(x) ĝ4(x) ĝ(x)

100
0.25 1.01359 0.21218 0.27843 0.16527 11.08011
0.50 0.04002 0.03303 0.03370 0.03712 0.37979
0.75 0.01091 0.01280 0.01713 0.01921 0.15926

250
0.25 0.37429 0.21218 0.27843 0.16527 5.73473
0.50 0.01493 0.01476 0.02222 0.02489 0.19629
0.75 0.00440 0.00785 0.01062 0.01449 0.10263

500
0.25 0.30395 0.21217 0.27842 0.16527 3.86783
0.50 0.00738 0.00978 0.01623 0.02416 0.15568
0.75 0.00242 0.00628 0.00849 0.01312 0.08401
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Table 7. AISEs of multivariate multiplicative boundary functions estimators with
mixed normal distribution.

n Method ĝ1(x) ĝ2(x) ĝ3(x) ĝ4(x) ĝ(x)

100

URS 0.01916 0.01981 0.02023 0.03101 571.029
UQS 0.00714 0.00855 0.00820 0.01823 164.497

MCRS 0.01285 0.01187 0.01437 0.02195 430.972
MCQS 0.00544 0.00536 0.00550 0.01553 112.571

MCCRS 0.01129 0.01035 0.01203 0.02022 304.044
MCCQS 0.00520 0.00488 0.00515 0.01523 98.635

250

URS 0.00734 0.00828 0.00855 0.01928 193.622
UQS 0.00380 0.00405 0.00455 0.01549 80.343

MCRS 0.00590 0.00606 0.00700 0.01653 155.710
MCQS 0.00308 0.00302 0.00347 0.01415 60.585

MCCRS 0.00493 0.00496 0.00607 0.01580 114.134
MCCQS 0.00285 0.00268 0.00341 0.01405 54.444

500

URS 0.00388 0.00406 0.00465 0.01570 90.970
UQS 0.00220 0.00247 0.00305 0.01426 52.978

MCRS 0.00350 0.00347 0.00414 0.01447 79.053
MCQS 0.00194 0.00205 0.00268 0.01369 44.999

MCCRS 0.00278 0.00280 0.00379 0.01424 60.806
MCCQS 0.00171 0.00182 0.00266 0.01366 41.687

Table 8. MISEs of multivariate multiplicative boundary functions estimators with
mixed normal distribution.

n Method ĝ1(x) ĝ2(x) ĝ3(x) ĝ4(x) ĝ(x)

100

URS 0.01287 0.01387 0.01365 0.02533 319.590
UQS 0.00233 0.00292 0.00348 0.01442 68.713

MCRS 0.00784 0.00706 0.00964 0.01793 187.318
MCQS 0.00233 0.00289 0.00300 0.01360 37.566

MCCRS 0.00680 0.00608 0.00634 0.01695 128.057
MCCQS 0.00196 0.00209 0.00285 0.01338 31.715

250

URS 0.00502 0.00554 0.00614 0.01680 126.035
UQS 0.00165 0.00196 0.00243 0.01358 51.435

MCRS 0.00420 0.00395 0.00466 0.01488 81.774
MCQS 0.00165 0.00196 0.00242 0.01296 34.003

MCCRS 0.00337 0.00325 0.00369 0.01410 59.709
MCCQS 0.00129 0.00141 0.00237 0.01287 29.662

500

URS 0.00272 0.00291 0.00338 0.01476 63.728
UQS 0.00106 0.00142 0.00211 0.01343 40.039

MCRS 0.00272 0.00287 0.00303 0.01369 50.968
MCQS 0.00106 0.00142 0.00211 0.01297 33.490

MCCRS 0.00173 0.00200 0.00269 0.01328 38.955
MCCQS 0.00073 0.00110 0.00209 0.01294 30.184

both regression spline and quantile spline. Results are shown in
Tables 7 and 8.

Similar to the additive case, as the sample size increases,
both AISEs and MISEs decrease for all six estimation methods.
The methods with shape constraints improve the accuracy of
boundary estimation not only for individual additive compo-
nents but also for the boundary function. Quantile regression
consistently and significantly improves the estimation accuracy.
For example, when n = 250 and for input variable X1, the AISE
(or MISE) of MCQS is only 52% (or 39%) of that from MCRS.

For each input variable, we also plot {ĝi}d
i=1 in Equation

(18) using four different methods with URS, UQS, MCCRS,
and MCCQS. Figure 3 illustrates curve estimates for functions
{gi}d

i=1 from URS, UQS, MCCRS, and MCCQS in the multi-
variate multiplicative case. They follow the same patterns except
for the difference in scale. It shows all methods give reasonable
curve estimates, while the ones from the quantile regression

are generally better than their mean regression counterpart.
For example, UQS (MCCQS) gives better curve estimates than
URS (MCCRS). In addition, the estimated curves using shape
constraints are closer to the true boundary than the ones without
shape constraints.

6.2. Applications of Quantile Regression

In this section, we present an application of our proposed esti-
mation methods to analyze Norwegian farm data. The supple-
mentary materials contain an additional application of the pro-
posed method using High Technology Firm data. The median
(τ = 0.5) regression and linear (p = 1) splines are used in the
following analysis.

The Norwegian Farm data is from Kumbhakar, Lien, and
Hardaker (2014). The dataset contains observations from 151
grain farms in Norway for year 2007. The same dataset was
also analyzed in Wang and Xue (2015) and Wang, Xue, and
Yang (2020). The objective is to assess the relative efficiency
of these farms, that is, Yi/g(Xi). The variable of interest is the
farm revenue measured in Norwegian krone. We use the log
of farm revenue denoted as Y in our boundary/frontier model.
The input variables include the total number of hours worked
(labor) on the farm (X1), the productive variable in hectares
(X2), the variable farm inputs (X3), and the fixed farm input
and capital costs (X4). We consider the additive frontier model
Y = [g0 + g1(X1)+ g2(X2)+ g3(X3)+ g4(X4)]R to quantify the
farm revenue based on the given input variables.

Figure 4 shows the relationship between farm revenue (in
log scale) and inputs. It shows that all input variables have
monotonic effects on the farm revenue. In addition, as the input
variable increases, the rate of change slightly decreases. Thus,
it seems reasonable to estimate the farm production frontier
with both monotone and concave constraints for Norwegian
Farm data. Therefore, we consider monotone and concave con-
strained estimation using both regression spline (MCCRS) and
quantile spline (MCCQS). In addition, unconstrained methods
(URS and UQS) are also considered for comparison purposes.
For simplicity, the number of interior knots Nn is set to be the
integer part of n1/(2p+3), and the knots are equally spaced in the
range of observed values for each input variable.

The estimation results are plotted in Figure 5, where the cir-
cles are pseudo observations, and the dashed and long-dashed
lines denote the estimated quantile functions using UQS and
MCCQS, respectively. In Figure 5, we also plotted 95% boot-
strapped point-wise confidence intervals (dotted lines) using
UQS, where the lower and upper bounds are calculated as 2.5%
and 97.5% sample quantiles of the UQS estimates from 100
bootstrapped samples. Because there are no obvious outliers in
the Norwegian Farm data, the regression spline and quantile
spline methods give very similar results.

We estimate the frontier functions and evaluate the produc-
tion efficiency of each farm. The estimated frontier functions
using different methods are displayed in Figure 6(a), where
the solid circles are the observed farm revenues, and the solid,
dotted, dot-dashed and long-dashed lines denote the estimated
maximum revenue using URS, MCCRS, UQS, and MCCQS,
respectively. It appears that these four estimation approaches
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Figure 3. Plots of curve estimates for functions {gi}d
i=1 in Equation (18) for n = 250. In each plot, the solid line represents the true curve, while the dashed ( ),

dot-dashed ( ), dotted ( ), and long-dashed ( ) lines represent typically fitted curves using URS, MCCRS, UQS, and MCCQS, respectively.

give very similar results with four frontier functions overlapping
with each other. Figure 6(b) plots the kernel density of the
estimated farm production efficiency, and the line specifications
are the same as in Figure 6(a). It shows that the majority of farms
have estimated efficiency higher than 0.95, indicating that most
farms are fairly efficient in their production.

Furthermore, to provide some insights on what potentially
causes the differences in farm production efficiency, we run
a linear regression using the off-farm income share, the cou-
pled subsidy income share, the environmental subsidy income
share, the farmer’s experience and the farm’s education level
as explanatory variable to explain farm production efficiency
individually. The definition of each explanatory variables is the

same as Wang, Xue, and Yang (2020). The efficiency obtained
from the MCCQS method is used as the dependent variable.

The estimated coefficients are given in Table 9. Similar to the
results in Wang, Xue, and Yang (2020), both coupled subsidy
income share and environmental subsidy income share have
a significant negative effect on the farm production efficiency,
while the off-farm income share and the farm’s experience have
no significant effects on the farm production efficiency. In addi-
tion, we use one-way ANOVA analysis to examine the effect of
education on farm productivity. We divide farmers’ educations
into three groups, that is, such as, primary, secondary, and
high, however, the result shows there is no relationship between
them.
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Figure 4. Scatterplots showing the correlation between farm revenue and inputs in Norwegian farm Data.

Figure 5. The nonparametric estimate of the expected median on the farm revenue. The circles are pseudo observations for each input variable, the dashed ( ) and
long-dashed ( ) lines denote the estimated nonparametric regression based on UQS and MCCQS, respectively. The dotted ( ) lines describe the 95% point-wise
confidence interval from 100 bootstrap samples using the UQS method.
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Figure 6. Panel (a) plots the estimated maximum farm log revenues, while Panel (b) gives the kernel density distribution of the relative efficiency estimates, where the
solid ( ), dotted ( ), dot-dashed ( ), and long-dashed ( ) lines represent the density estimate using URS, MCCRS, UQS, and MCCQS, respectively. The solid
circles in Panel (a) are the observed true farm log revenues.

Table 9. The estimated regression coefficients with standard errors in parentheses.

Variables Coefficients

Off-farm income share −0.0007(0.0070)
Coupled subsidy income share −0.0890(0.0151)
Environmental subsidy income share −0.2250(0.0437)
Farmer’s experience 0.0000(0.0002)

7. Conclusion

In this article, we employ a two-stage estimation strategy for
additive boundary functions. A one-step backfitted quantile
regression is used to estimate the shape of the frontier and
a robust method using pseudo-residuals is proposed for the
location of the boundary. Our method inherits the robustness
property of quantile regression and is resistant to skewed distri-
butions and/or outliers in the data. In addition, we also impose
shape constraints on the estimated boundary through a set
of simple linear constraints on spline coefficients. Our results
show that the proposed method not only takes advantage of
linear programming and is computationally efficient, but also
enjoys desirable theoretical properties. We show that our shape
constrained estimator is asymptotically equivalent to, and thus
enjoys the same asymptotic properties as, the unconstrained
one. For future research, it is worth developing confidence bands
for the proposed estimators as in Wang and Yang (2009).

Supplementary Materials

The supplementary materials contain an additional real data application of
the proposed method, as well as the relevant lemmas and detailed proofs of
the theorems.
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